
MATH 320: PRACTICE PROBLEMS FOR THE FINAL
AND SOLUTIONS

There will be eight problems on the final. The following are sample
problems.

Problem 1. Let F be the vector space of all real valued functions on
the real line (i.e. F = {f | f : R → R}). Determine whether the
following are subspaces of F . Prove your answer.

(1) {f ∈ F | f(x) = −f(−x) for all x}.
(2) {f ∈ F | f(0) = 1}.
(3) {f ∈ F | f(1) = 0}.

Solution 1. (1) W = {f ∈ F | f(x) = −f(−x) for all x} is a
subspace since the following hold:
• for all x, ~0(x) = 0 = −~0(−x), so ~0 ∈ W ,
• if f, g ∈ W , then for all x, (f + g)(x) = f(x) + g(x) =
−f(−x)− g(−x) = −(f + g)(−x), so f + g ∈ W ,
• if f ∈ W and c is a scalar, then for all x, (cf)(x) = cf(x) =
c(−f(−x)) = −cf(−x) = −(cf)(−x), so cf ∈ W .

(2) {f ∈ F | f(0) = 1} is not a subspace since ~0 is not in it.
(3) S = {f ∈ F | f(1) = 0} is a subspace since the following hold:

• ~0(1) = 0, so ~0 ∈ S,
• if f, g ∈ S, then (f + g)(1) = f(1) + g(1) = 0 + 0 = 0, so
f + g ∈ S,
• if f ∈ S and c is a scalar, (cf)(1) = cf(1) = c0 = 0, so
cf ∈ S.

Problem 2. Suppose that T : V → V . Recall that a subspace W is
T -invariant if for all x ∈ W , we have that T (x) ∈ W .

(1) Prove that ran(T ), ker(T ) are both T -invariant.
(2) Suppose that W is a T -invariant subspace and V = ran(T )⊕W .

Show that W ⊂ ker(T ).

Solution 2. For part (1), for any x ∈ ran(T ), we have that T (x) ∈
ran(T ), so the range is invariant. Also, if x ∈ ker(T ), then T (x) = 0 ∈
ker(T ), so the kernel is invariant.

For part (2), suppose that x ∈ W . Then T (x) ∈ W , since W is
invariant. But also T (x) ∈ ran(T ). Since V = ran(T ) ⊕W , we have
that ran(T )∩W = {0}. And since T (x) is in that intersection, we have
that T (x) = 0, so x ∈ ker(T ). It follows that W ⊂ ker(T ).
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Problem 3. Suppose that T : V → W is a linear transformation and
{v1, ..., vn} is a basis for V . Prove that T is an isomorphism if and
only if {T (v1), ..., T (vn)} is a basis for W .

Solution 3. For the first direction, suppose that T is an isomorphism.
We have to show that {T (v1), ..., T (vn)} is a basis for W . First we will
show that the vectors are linearly independent. Suppose that for some
scalars a1, ..., an, we have

a1T (v1) + ...+ anT (vn) = 0

⇒ T (a1v1 + ...anvn) = 0

⇒ a1v1 + ...+ anvn ∈ ker(T ).

T is one-to-one, so it has a trivial kernel, so a1v1 + ... + anvn = 0.
But {v1, ..., vn} are linearly independent since they are a basis for V .
So, a1 = ... = an = 0. It follows that {T (v1), ..., T (vn)} are linearly
independent. Now, T is an isomorphism, and so dim(V ) = dim(W ) =
n. Therefore {T (v1), ..., T (vn)} is a basis for W .

For the other direction, suppose that {T (v1), ..., T (vn)} is a basis
for W . We have to show that T is onto and on-to-one. Let y ∈ W ,
then for some scalars a1, ..., an, we have y = a1T (v1) + ...+ anT (vn) =
T (a1v1 + ...anvn) ∈ ran(T ). Thus T is onto. To show that it is one-to-
one, suppose that T (x) = 0, let c1, ..., cn be such that x = c1v1+...+cnvn
(here we use that {v1, ..., vn} is a basis for V ). Then 0 = T (x) =
T (c1v1 + ... + cnvn) = c1T (v1) + ... + cnT (vn). But {T (v1), ..., T (vn)}
are linearly independent, so c1 = ... = cn = 0, and so x = 0. It follows
that T is one-to-one.

Problem 4. Let T : R3 → R3 be T (〈x1, x2, x3〉) = 〈x1 − x2, x2 −
x3, x3 − x1〉. Let β = {〈1, 1, 1〉, 〈1, 1, 0〉, 〈1,−1, 0〉} and let e be the
standard basis for R3.

(1) Find [T ]e.
(2) Find [T ]β
(3) Find an invertible matrix Q such that [T ]β = Q−1[T ]eQ.

Solution 4. T (e1) = 〈1, 0,−1〉, T (e2) = 〈−1, 1, 0〉, T (e3) = 〈0,−1, 1〉.
So,

[T ]e =

 1 −1 0
0 1 −1
−1 0 1


For the second part, we have that:

• T (〈1, 1, 1〉) = 〈0, 0, 0〉,
• T (〈1, 1, 0〉) = 〈0, 1,−1〉 = −〈1, 1, 1〉+ 3

2
〈1, 1, 0〉 − 1

2
〈1,−1, 0〉,
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• T (〈1,−1, 0〉) = 〈2,−1,−1〉 = −〈1, 1, 1〉+ 3
2
〈1, 1, 0〉+ 3

2
〈1,−1, 0〉

So,

[T ]β =

 0 −1 −1
0 3

2
3
2

0 −1
2

3
2


Finally, let

Q =

 1 1 1
1 1 −1
1 0 0


Then Q = [id]eβ and so [T ]β = Q−1[T ]eQ.

Problem 5. Prove the theorem that a linear transformation is one-to-
one if and only if it has a trivial kernel.

Solution 5. For the left to right (and easier) direction, suppose that
T is one-to-one. If x ∈ ker(T ), then T (x) = T (0) = 0, so since T is
one-to-one, we get x = 0. I.e. ker(T ) = {0}.

For the other direction, suppose that ker(T ) = {0}, and suppose
that for some x, y, T (x) = T (y). Then T (x) − T (y) = T (x − y) = 0,
so x − y ∈ ker(T ). By our assumption, it follows that x − y = 0, i.e.
x = y. So, T is one-to-one.

Problem 6. Determine if the following systems of linear equations are
consistent

(1)
x+ 2y + 3z = 1
x+ y − z = 0
x+ 2y + z = 3

(2)
x+ 2y − z = 1
2x+ y + 2z = 3
x− 4y + 7z = 4

Solution 6. We can represent the system in part (1) as A~v = 〈1, 0, 3〉,
where ~v = 〈x, y, z〉 and

A =

 1 2 3
1 1 −1
1 2 1


Row reducing A, we compute that the rank of A is 3, and so LA is
onto. Then 〈1, 0, 3〉 is in its range, and so the system is consistent.
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For the second system, we have A~v = 〈1, 3, 4〉, where ~v = 〈x, y, z〉
and

A =

 1 2 −1
2 1 2
1 −4 7


Row reducing A, we compute that the rank of A is 2. On the other

hand, setting ~b = 〈1, 3, 4〉, we have that the rank of [A|~b] is 3 (again

we row reduce to compute that.) So, ~b /∈ ranLA. It follows that the
system is inconsistent.

Problem 7. Suppose that A,B are two n×n matrices. Prove that the
rank of AB is less than or equal to the rank of B.

Solution 7. First we note that by the dimension theorem, for any
linear transformation T : V → W and subspace S of V , we have
that dim(T ′′S) ≤ dim(S). Here T ′′S denotes the image of S under
T . Now, we have that rank(AB) = rank(LAB) = dim(ranLAB) =
dim(ran(LA ◦ LB)) = dim(L′′A(ranLB)) ≤ dim(ranLB) = rank(B).

Problem 8. Suppose A,B are n×n matrices, such that B is obtained
from A by multiplying a row of A by a nonzero scalar c. Prove that
det(B) = c det(A). (You can use the definition of determinant by
expansion along any row or column.)

Solution 8. If n = 1, then A = (a), B = (ca), and so det(B) = ca =
c det(A). Now, suppose that n > 1. Let 1 ≤ k ≤ n be such that the
k-th row of A is multiplied by c to obtain B. Denote

A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n.

Then for all j, bkj = cakj. Also, for 1 ≤ i, j ≤ n let Aij and Bij be the
n− 1× n− 1 submatrices obtained by removing the i-th row and the
j-th column of A and B respectively. Note that for all j, Akj = Bkj.
Then, expanding along the k-th row of B, we compute:

det(B) = Σ1≤j≤nbkj(−1)j+k detBkj = Σ1≤j≤ncakj(−1)j+k detAkj =

= c(Σ1≤j≤nakj(−1)j+k detAkj) = c det(A).

Problem 9. Suppose M is an n× n matrix that can be written in the
form

M =

(
A B
0 I

)
where A is a square matrix. Show that det(M) = det(A).
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Solution 9. We prove this by induction on k. If k = 1, then denote

M =

(
a B
0 I

)
where a is a scalar. So, expanding by the first column, we get det(M) =
a det(I) = a = det(A) as desired.

Now, suppose that k > 1 and the statement is true for k−1. Denote
A = (aij)1≤i,j≤k. Also, for 1 ≤ i ≤ k, Mi1 is the submatrix of M
obtained by removing the i-th row and the first column. Then for each
i ≤ k, Mi1 has the form: (

Ai1 Bi

0 I

)
where Ai1 is the submatrix of A obtained by removing the i-th row
and the first column of A, and Bi is the submatrix of B obtained by
removing the i-th row of B. By the inductive hypothesis, we have that
for each i ≤ k, det(Mi1) = det(Ai1). Expanding by the first column,
we get:

det(M) = Σ1≤i≤kai1(−1)i+1 detMi1 = Σ1≤i≤kai1(−1)i+1 detAi1 = det(A).

Problem 10. A matrix A is called nilpotent if for some positive in-
teger k, Ak = 0. Prove that if A is a nilpotent matrix, then A is not
invertible.

Solution 10. Here we will use the theorem that for any two matrices
B,C, we have that det(BC) = det(B) det(C). Fix k such that Ak = 0.
Then 0=det(Ak) = (det(A))k. So, det(A) = 0. It follows that A is not
invertible.

Problem 11. An n × n matrix A is called orthogonal if AAt = In.
Prove that if A is orthogonal, then | detA| = 1.

Solution 11. We will use the theorems that for any two matrices B,C,
we have that det(BC) = det(B) det(C) and det(Bt) = det(B).

Suppose thatAAt = In. Then 1 = det(In) = det(AAt) = det(A) det(At) =
det(A) det(A) = (det(A))2. So | det(A)| = 1.

Problem 12. Let A be an n× n matrix. Prove that if A is diagonal-
izable, then so is At.

Solution 12. Since A is diagonalizable, let C be the invertible matrix
such that C−1AC = D, where D is a diagonal matrix. Then A =
CDC−1, and so At = (CDC−1)t = (C−1)tDtCt = (Ct)−1DCt, and so
CtAt(Ct)−1 = D. I.e. At is diagonalizable.
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Problem 13. Let

A =

 1 3 0
0 2 −1
0 0 0


Show that A is diagonalizable over R and find an invertible matrix C
such that C−1AC = D where D is diagonal.

Solution 13. The characteristic polynomial of A is λ(1 − λ)(2 − λ).
Setting this equal to zero, we get λ = 0, 1, 2. So, we have three eigen-
values. Since A is a 3× 3 matrix and there are 3 eigenvalues, it follows
that A must be diagonalizable.

To find the invertible matrix C, we have to find a basis of eigenvectors
and use them as the column vectors of C.

• for λ = 0, we solveAx = 0. A〈x1, x2, x3〉 = 〈x1+3x2, 2x2−x3, 0〉
and so 0 = x1 + 3x2 = 2x2 − x3. So, x1 = −3x2 and x3 = 2x2,
so x =c〈−3, 1, 2〉.
• for λ = 1, we solve Ax = x. Then x1 = x1 +3x2, x2 = 2x2−x3,
x3 = 0. So, x2 = 0 and x =c〈1, 0, 0〉.
• for λ = 2, we solve Ax = 2x. Then 2x1 = x1 + 3x2, 2x2 =

2x2 − x3, 2x3 = 0. So, x1 = 3x2 and x =c〈3, 1, 0〉.
Now let

C =

 −3 1 3
1 0 1
2 0 0


C−1AC = D, where

D =

 0 0 0
0 1 0
0 0 2


Problem 14. Let T : V → V be a linear transformation and let x ∈
V . Let W be the T -cyclic subspace of V generated by x. I.e. W =
Span({x, T (x), T 2(x), ...}).

(1) Show that W is T - invariant.
(2) Show that W is the smallest T -invariant subspace containing x

(i.e. show that any T -invariant subspace that contains x, also
contains W ).

Solution 14. For the first part of the problem, suppose that y ∈ W .
Then for some scalars, y = a1x+a2T (x) + ...an+1T

n(x), and so T (y) =
T (a1x+a2T (x) + ...an+1T

n(x)) = a1T (x) +a2T
2(x) + ...an+1T

n+1(x) ∈
W . Thus W is T - invariant.
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For the second part of the problem, suppose that S is a T -invariant
subspace that contains x. First we show the following claim.

Claim 15. For all k ≥ 0, T k(x) ∈ S.

Proof. By induction on k. If k = 0, then T k(x) = x ∈ S by assumption.
Now suppose that T k(x) ∈ S. Then T k+1(x) = T (T k(x)) ∈ S since S
is T -invariant. �

Now for any y ∈ W , we know that for some scalars, y = a1x +
a2T (x)+...an+1T

n(x) and since S is a subspace (i.e. closed under vector
addition and scalar multiplication) we get that y ∈ S. So, W ⊂ S.

Problem 15. Let

A =

(
1 2
−2 1

)
Use the Cayley-Hamilton theorem to show that A2−2A+5I is the zero
matrix.

Solution 16. The characteristic polynomial of A is f(t) = det(A −
tI2) = (1− t)2 + 4 = t2 − 2t+ 5. By the Cayley-Hamilton theorem, A
satisfies its own characteristic polynomial. Therefore, A2 − 2A+ 5I is
the zero matrix.


