MATH 320: PRACTICE PROBLEMS FOR THE FINAL
AND SOLUTIONS

There will be eight problems on the final. The following are sample
problems.

Problem 1. Let F be the vector space of all real valued functions on
the real line (i.e. F = {f | f : R — R}). Determine whether the

following are subspaces of F. Prove your answer.

(1) {f € F | f(z) = —f(==) for all x}.

(2) {f € F|f(0)=1}.

) {feF|r)=0}

Solution 1. (L)W ={f e F| fle) = —f(—x) for all z} is a
subspace since the following hold:
e for all z, 0(z) = 0= —0(—z),s00 € W,
o if f,g € W, then for all z, (f + g)(x) = f(x) + g(x) =
—f(=2) —g(=2) = =(f + g)(=x), 50 f+ g € W,

e if f € W and cis a scalar, then for all z, (¢f)(z) = cf(x) =

o(=f(=x)) = —cf(=x) = =(cf)(=x), s0 cf € W.
(2) {f € F| f(0) =1} is not a subspace since 0 is not in it.
(3) S={f¢€ ]:\ f@ ) = 0} is a subspace since the following hold:
e 0(1)=0,s00¢€ 5,
1ffg€S then(f+g)() (1) +9(1)=0+0=0, so
f+ges,
o if f € S and ¢ is a scalar, (¢f)(1) = c¢f(1) = ¢0 = 0, so
cfes.

Problem 2. Suppose that T : V. — V. Recall that a subspace W is
T-invariant if for all x € W, we have that T'(z) € W.

(1) Prove that ran(T'), ker(T') are both T-invariant.
(2) Suppose that W is a T-invariant subspace and V = ran(T)®W .
Show that W C ker(T).

Solution 2. For part (1), for any = € ran(7"), we have that T'(x
ran(7"), so the range is invariant. Also, if x € ker(7T'), then T'(x) =
ker(T), so the kernel is invariant.

For part (2), suppose that x € W. Then T(xz) € W, since W is
invariant. But also 7'(z) € ran(T"). Since V' = ran(T) & W, we have
that ran(7)NW = {0}. And since T'(x) is in that intersection, we have

that T'(z) = 0, so = € ker(T'). It follows that W C ker(T).
1

)
0 €
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Problem 3. Suppose that T : V. — W is a linear transformation and
{v1, ..., v, } is a basis for V. Prove that T is an isomorphism if and
only if {T'(v1),....,T(v,)} is a basis for W.

Solution 3. For the first direction, suppose that 7" is an isomorphism.
We have to show that {T'(vy),...,T(v,)} is a basis for W. First we will
show that the vectors are linearly independent. Suppose that for some
scalars aq, ..., a,, we have

(IlT(’Ul) + ...+ anT(vn) =0

= T(ayvy + ...apv,) =0

= a101 + ... + a,v, € ker(T).
T is one-to-one, so it has a trivial kernel, so a1v; + ... + a,v, = 0.
But {v1,...,v,} are linearly independent since they are a basis for V.
So, a; = ... = a, = 0. It follows that {T'(v1),...,T(v,)} are linearly
independent. Now, 7" is an isomorphism, and so dim(V') = dim(W) =
n. Therefore {T'(v1),...,T(v,)} is a basis for W.

For the other direction, suppose that {T'(vy),...,T(v,)} is a basis
for W. We have to show that T is onto and on-to-one. Let y € W,
then for some scalars ay, ..., a,, we have y = a;T(v1) + ... + a, T (v,) =
T(ayv1 + ...apv,) € ran(T'). Thus T is onto. To show that it is one-to-
one, suppose that T'(x) = 0, let ¢y, ..., ¢, be such that x = c;v1+...4+¢c v,
(here we use that {vy,...,v,} is a basis for V). Then 0 = T'(z) =
T(civr + ... + cpvn) = T (v1) + ... + ¢, T(v,). But {T(vq),...,T(v,)}
are linearly independent, so ¢; = ... = ¢, = 0, and so x = 0. It follows
that 7" is one-to-one.

Problem 4. Let T : R3 — R3 be T({xy, 72, 23)) = (w1 — 29,79 —
x3,x3 — x1). Let f = {(1,1,1),(1,1,0),(1,—1,0)} and let e be the
standard basis for R3.

(1) Find [T)..

(2) Find [T]g

(3) Find an invertible matriz Q such that [T)s = Q7 '[T).Q.

Solution 4. T'(e;) = (1,0,—1), T'(ex) = (—1,1,0), T'(e3) = (0,—1,1).
So,

For the second part, we have that:
e I'((1,1,1)) = (0,0,0,
e T((1,1,0)) = (0,1,—1) = —(1,1,1) + %(1, 1,0) — %(1, —1,0),
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o T((1,—1,0)) = (2,—1,—1) = —(1, 1, 1) + 3(1,1,0) + (1, —1,0)

So,
0 -1 -1
Tz=0 2 2
=) A s
2 2
Finally, let
11 1
o=111 -1
10 0

Then Q = [id]§ and so [T]s = Q'[T.Q.

Problem 5. Prove the theorem that a linear transformation is one-to-
one if and only if it has a trivial kernel.

Solution 5. For the left to right (and easier) direction, suppose that
T is one-to-one. If x € ker(T), then T(x) = T'(0) = 0, so since T is
one-to-one, we get x = 0. Le. ker(T) = {0}.

For the other direction, suppose that ker(7") = {0}, and suppose
that for some z,y, T'(z) = T'(y). Then T'(z) — T(y) = T(z —y) = 0,
so x —y € ker(T'). By our assumption, it follows that z —y = 0, i.e.
x =1y. So, T is one-to-one.

Problem 6. Determine if the following systems of linear equations are
consistent

(1)

r+2y+3z2=1

r+y—2=0

r+2y+2=3
(2)

r+2y—z=1

20 +y+2z=3
r—4y+72=4

Solution 6. We can represent the system in part (1) as A0 = (1,0, 3),
where ' = (x,y, z) and

Row reducing A, we compute that the rank of A is 3, and so L, is
onto. Then (1,0, 3) is in its range, and so the system is consistent.
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For the second system, we have At = (1,3,4), where v = (z,y, 2)
and

1 2 -1
A=12 1 2
1 -4 7

Row reducing A, we compute that the rank of A is 2. On the other
hand, setting b = (1,3,4), we have that the rank of [A|b] is 3 (again
we row reduce to compute that.) So, b ¢ ran L4. It follows that the

system is inconsistent.

Problem 7. Suppose that A, B are two n X n matrices. Prove that the
rank of AB is less than or equal to the rank of B.

Solution 7. First we note that by the dimension theorem, for any
linear transformation 7" : V' — W and subspace S of V, we have
that dim(7”S) < dim(S). Here T"S denotes the image of S under
T. Now, we have that rank(AB) = rank(Lap) = dim(ran L,p) =
dim(ran(L4 o Lg)) = dim(L/)(ran L)) < dim(ran L) = rank(B).

Problem 8. Suppose A, B are n x n matrices, such that B is obtained
from A by multiplying a row of A by a nonzero scalar c¢. Prove that
det(B) = cdet(A). (You can use the definition of determinant by
expansion along any row or column.)

Solution 8. If n = 1, then A = (a), B = (ca), and so det(B) = ca =
cdet(A). Now, suppose that n > 1. Let 1 < k < n be such that the
k-th row of A is multiplied by ¢ to obtain B. Denote

A = (ai)1<ij<n, B = (bij)i<ij<n-

Then for all j, by; = cagj. Also, for 1 <14, j < nlet A;; and B;; be the
n — 1 X n — 1 submatrices obtained by removing the i-th row and the
J-th column of A and B respectively. Note that for all j, Ax; = By;.
Then, expanding along the k-th row of B, we compute:

det(B) = Elgjgnbkj(—l)jJrk det Bkj = Zlgjgncakj<—1)j+k det Akj =
= C(Elgjgnakj(—l)j—i_k det Ak]) = Cth(A).

Problem 9. Suppose M is an n X n matriz that can be written in the

form
A B
-0 7)

where A is a square matriz. Show that det(M) = det(A).
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Solution 9. We prove this by induction on k. If £k = 1, then denote

w3 )

where a is a scalar. So, expanding by the first column, we get det(M) =
adet(I) = a = det(A) as desired.

Now, suppose that £ > 1 and the statement is true for £ — 1. Denote
A= (aij>1§i7j§k. AAISO7 for 1 S 1 S k’, Mil is the submatrix of M
obtained by removing the ¢-th row and the first column. Then for each

1 < k, M;; has the form:
Apn B;
0 I

where A;; is the submatrix of A obtained by removing the i-th row
and the first column of A, and B; is the submatrix of B obtained by
removing the i-th row of B. By the inductive hypothesis, we have that
for each ¢ < k, det(M;;) = det(A;1). Expanding by the first column,
we get:

det(M) = Elgigkaﬂ(—l)“_l det Mﬂ = Elgigkaﬂ(—l)“_l det Aﬂ = det(A)

Problem 10. A matriz A is called nilpotent if for some positive in-
teger k, A¥ = 0. Prove that if A is a nilpotent matriz, then A is not
wnvertible.

Solution 10. Here we will use the theorem that for any two matrices
B, C, we have that det(BC) = det(B) det(C). Fix k such that A* = 0.
Then 0=det(A*) = (det(A))*. So, det(A) = 0. It follows that A is not

invertible.

Problem 11. An n x n matriz A is called orthogonal if AA* = I,.
Prove that if A is orthogonal, then |det A| = 1.

Solution 11. We will use the theorems that for any two matrices B, C,
we have that det(BC') = det(B) det(C') and det(B") = det(B).

Suppose that AA" = I,,. Then 1 = det(I,,) = det(AA") = det(A) det(A") =
det(A) det(A) = (det(A))?. So |det(A)| = 1.

Problem 12. Let A be an n X n matriz. Prove that if A is diagonal-
izable, then so is At.

Solution 12. Since A is diagonalizable, let C' be the invertible matrix
such that C~'AC = D, where D is a diagonal matrix. Then A =
CDC™!, and so A' = (CDC™)! = (C™H!DICt = (C")~'DC*, and so
C'AYCH ™t = D. T.e. A!is diagonalizable.
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Problem 13. Let
1 3 0
A=10 2 -1
00 O

Show that A is diagonalizable over R and find an invertible matriz C
such that C~*AC = D where D is diagonal.

Solution 13. The characteristic polynomial of A is A(1 — A\)(2 — \).
Setting this equal to zero, we get A = 0,1,2. So, we have three eigen-
values. Since A is a 3 x 3 matrix and there are 3 eigenvalues, it follows
that A must be diagonalizable.
To find the invertible matrix C, we have to find a basis of eigenvectors
and use them as the column vectors of C.
e for A = 0, we solve Ax = 0. A(xy,x9, x3) = (x1+3x2, 200—23,0)
and so 0 = x1 + 3x9 = 225 — x3. S0, 1 = —3x5 and x3 = 21,
so x =¢(—3,1,2).
e for A = 1, we solve Ax = x. Then x1 = x1+ 312, 9 = 229 — 23,
x3 = 0. So, 5 = 0 and x =¢(1, 0, 0).
e for \ = 2, we solve Ax = 2x. Then 221 = x1 + 329, 229 =
2x9 — x3, 223 = 0. So, r1 = 3x9 and x =¢(3,1,0).
Now let

-3 1 3
C = 1 01
2 00
C~1AC = D, where
0 00
D=1010
0 0 2

Problem 14. Let T : V — V be a linear transformation and let x €
V. Let W be the T-cyclic subspace of V' generated by . lLe. W =
Span({z,T(x),T?*(x),...}).
(1) Show that W is T - invariant.
(2) Show that W is the smallest T-invariant subspace containing x
(i.e. show that any T-invariant subspace that contains x, also
contains W ).

Solution 14. For the first part of the problem, suppose that y € W.
Then for some scalars, y = ayz + a1 () + ...a,+1T"(x), and so T'(y) =
T(ayx+ aoT(x) + ...ap 1 T™(2)) = a1 T(x) + aoT?(x) +...apn 1 T (2) €
W. Thus W is T' - invariant.
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For the second part of the problem, suppose that S is a T-invariant
subspace that contains z. First we show the following claim.

Claim 15. For all k >0, T"(x) € S.

Proof. By induction on k. If k = 0, then T*(z) = x € S by assumption.
Now suppose that T%(x) € S. Then T*(z) = T(T*(z)) € S since S
is T-invariant. U

Now for any y € W, we know that for some scalars, y = ajx +
asT(x)+...an41T" () and since S is a subspace (i.e. closed under vector
addition and scalar multiplication) we get that y € S. So, W C S.

Problem 15. Let
1 2
a=(57)

Use the Cayley-Hamilton theorem to show that A? —2A 451 is the zero
matriz.

Solution 16. The characteristic polynomial of A is f(t) = det(A —
tly) = (1 —t)*> +4 =t* — 2t + 5. By the Cayley-Hamilton theorem, A
satisfies its own characteristic polynomial. Therefore, A2 — 24 + 51 is
the zero matrix.



